Coenzyme-A, and the Coenzyme Q10 Connection

Coenzyme Q10 (CoQ10), which is also known as ubiquinone, is one form of a substance known as coenzyme Q, which is found in all plant and animal cells. Coenzyme Q10 is the form used for energy production in humans and it can be made from some of the other forms of coenzyme Q in your diet.

Natural Coenzyme Q10 sources

Coenzyme Q is found in all plant and animal cells. Some coenzyme Q10 is made in the body, particularly in the liver, and some is obtained from food. The production process is a complex one involving around 15 different reactions. It is not clear how much coenzyme Q10 from the diet contributes to body stores, but evidence suggests that dietary coenzyme Q10 is an important source.

The average person may consume around 5 mg of coenzyme Q10 per day. The main sources are meat, fish and vegetable oils. Soybean, sesame and canola oils are high in CoQ10. Wheat germ, rice bran and soybeans contain reasonable amounts of coenzyme Q10, but vegetables contain relatively little; although spinach and broccoli may be quite good sources.

Interactions with other nutrients

Coenzyme Q10 synthesis requires vitamins B6, C, B12, folic acid, riboflavin, niacin, and pantothenic acid. Coenzyme-A is required to initiate the chemical reactions that involve the body's ability to utilize coenzyme Q10. In other words, if Coenzyme-A is not present in sufficient amounts then the human body cannot utilize coenzyme Q10.

Coenzyme Q10 supplements

Coenzyme Q10 is available in tablets and capsules. Oil-based supplements may be the best absorbed form. The amount of coenzyme Q10 available from dietary sources is likely to be insufficient to produce the clinical effects of high dose coenzyme Q10. Coenzyme Q10 may take up to four to eight weeks to build up to peak concentration in the body, and it may take several weeks of daily dosing to see noticeable effects.

Therapeutic uses of Coenzyme Q10 supplements

Increasing scientific evidence suggests that coenzyme Q10 is a safe and effective therapy for a wide range of cardiovascular diseases such as congestive heart failure, cardiomyopathy, high blood pressure, mitral valve prolapse and angina. It has also been used to treat patients undergoing coronary artery bypass surgery. Coenzyme Q10 appears to exert its beneficial effects both by improving energy production and by acting as an antioxidant.

Interactions with drugs

Drugs known as beta blockers, which are used to treat high blood pressure and some other types of cardiovascular disease, have been shown to interfere with the production and function of coenzyme -A, and Co-Q10, and to adversely affect heart function. This may explain why, in some cases, long-term therapy with beta blockers can lead to congestive heart failure. Coenzyme-A, and Coenzyme Q10 therapy in combination with beta blockers may be very beneficial.

In recent years, the drugs lovastatin, pravastatin, and simvastatin have become widely used to treat high blood cholesterol. These medications work by inhibiting an enzyme known as HMG-CoA reductase, and they are very effective in lowering cholesterol levels. However, this enzyme is also responsible for production of both the Coenzyme-A and the Coenzyme Q10. Because of this, the cholesterol-lowering effect of these drugs is accompanied by an equivalent lowering of both Coenzyme-A and Coenzyme Q10 levels. Coenzyme-A and Coenzyme Q10 supplements may help to prevent some of the adverse effects of these widely used drugs.


1. Langsjoen H et al. Usefulness of coenzyme Q10 in clinical cardiology: a long-term study. Mol Aspects Med. 1994; 15 Suppl: s165-75.

2. Baggio-E et al. Italian multicenter study on the safety and efficacy of coenzyme Q10 as adjunctive therapy in heart failure. CoQ10 Drug Surveillance Investigators. Mol Aspects Med. 1994; 15 Suppl: s287-94.

3. Langsjoen P et al. Treatment of essential hypertension with coenzyme Q10. Mol Aspects Med. 1994; 15 Suppl: S265-72.

4. Digiesi V et al. Coenzyme Q10 in essential hypertension. Mol Aspects Med. 1994; 15 Suppl: s257-63.

5. Langsjoen PH; Langsjoen A; Willis R; Folkers K Treatment of hypertrophic cardiomyopathy with coenzyme Q10. Mol Aspects Med, 1997, 18 Suppl:, S145-51.

6. Hanaki-Y et al. Coenzyme Q10 and coronary artery disease. Clin Investig. 1993; 71(8 Suppl): S112-5.

7. Chello M et al. Protection by coenzyme Q10 of tissue reperfusion injury during abdominal aortic cross-clamping. J Cardiovasc Surg Torino. 1996 Jun; 37(3): 229-35.

8. Kamikawa T et al. Effects of coenzyme Q10 on exercise tolerance in chronic stable angina pectoris. Am J Cardiol, 1985 Aug 1, 56:4, 247-51.

9. Lockwood K et al. Apparent partial remission of breast cancer in 'high risk' patients supplemented with nutritional antioxidants, essential fatty acids and coenzyme Q10. Mol Aspects Med. 1994; 15 Suppl: s231-40.

10. Folkers-K; Simonsen-R. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim-Biophys-Acta. 1995 May 24; 1271(1): 281-6.

11. Ylikoski T; Piirainen J; Hanninen O; Penttinen J. The effect of coenzyme Q10 on the exercise performance of cross-country skiers. Mol Aspects Med, 1997, 18 Suppl:, S283-90.

12. Lewin A; Lavon H The effect of coenzyme Q10 on sperm motility and function. Mol Aspects Med, 1997, 18 Suppl:, S213-9.

13. Mortensen SA; Leth A; Ag

14. Abiko Y.; Metabolism of Coenzyme-A; New York Academic Press, Third Edition 1975; 7:1-25.

15. Annous, K. F. & Song, W. 0.; Pantothenic Acid Uptake and Metabolism By the Red Blood Cell; Journal of Nutrition 1995; 125: 2586-2593.

16. Binaghi, p., Cellina, G., Lo Cicero, G., Bruschi, F., & Penotti, M.; Evaluation of the Cholesterol-lowering effectiveness of pantethine in Perimenopausal Age; Minerva Med. June 1990; 81: 6, 475-9.

17. Downing, D. T. & Strauss L. S.; Synthesis and Composition of Surface Lipids of Human Skin 1974; 62.228- 244.

18. Dupre, A., Albarel, N., Bonofe, J. L., Christol, B., & Lassere, J.; Vitamin B-5; Cutis 1979: 24: 210- 2111979; 24: 210-211.

19. Eisenstein, P. & Scheiner, S. M. Ph.D.; Overcoming the Pain of Inflammatory Arthritis; Avery Publishing Group 1997.

European Journal of Applied Physiology and Occupational Physiology 1998; Abstract, Volume 77,Issue 6, pages 486-491; Physiological and Performance Responses to Supplementation With Thiamin and Pantothenic Acid Derivatives.

20. Gaddi, A., Descovich, G. C., Noseda, G., et al; Controlled Evaluation Hyperlipoproteinemia 1984; 50: 73- 83.

21. Greenberg, D. M.; Metabolism of Sulfur Compounds, Metabolic Pathways; New York Academic Press, Third Edition 1975; 7:1-25.

22. Grenville, G. D. & Tubbs, P. K.; The Catabolism of Long-Chain Fatty Acids in Mammalian Tissues; Essays in Biochemistry 1969; 4-155-212.

23. Hendler, S. S. M.D., Ph.D.;The Doctor’s Vitamin and Mineral Encyclopedia; Simon & Schuster, 1990.

24. Komar V.I; The Use of Pantothenic Acid Preparations in Treating Patients With Viral Hepatitis A; TerArkh 1991; 63: 11, 58-60.

25. Krebs, H. A.; The Regulation of Release of Ketone Bodies By the Liver; Advanced Enzyme Reaction 1966; 4:339-354.

26. Kunz, J. R. M., M.D.; The American Medical Association, Family Medical Guide; Random House Inc.; l982.

27. Leung, L. H., M.D.; Pantothenic Acid as a Weight Reducing Agent: Fasting Without Hunger, Weakness and Ketosis; Medical Hypothesis 1995; 44, 403, 405.

28. Leung, L. H., M.D.; Pantothenic Acid Deficiency as the Pathogenesis of Acne Vulgaris; Medical Hypothesis 1995; 44, 490, 492.

29. Lieberman, C. & Bruning, N.; Pantothenic Acid; Chapter 17, The Real Vitamin and Mineral Book; Avery Publishing Group 1997; 113-115.

Life Extension Foundation; Anti-Aging Therapies;; December 31, 1998.

30. Masoro, E. J.; Lipids and Lipid Metabolism; Annual Review of Physiology 1977; 39-301-21.

31. Baggot, P.J., Kalamarides, J.A., Shoemaker, J.D. (1999). Valproate-induced biochemical abnormalities in pregnancy corrected by vitamins: a case report. Epilepsia, 40, 512-515.

32. Baker, H., Frank, 0., Thomson, A.D., Feingold, 5. (1969). Vitamin distribution in red blood cells, plasma and other body fluids. Am. J. Chin. Nutr., 22, 1469-1475.

33. Barbarat, B., Podevin, R.A. (1986). Pantothenate-sodium cotransport in renal brush- border membranes. J. Biol. Chem., 261, 14455-14460.

34. Barboriak, J.J., Krehl, W.A. (1957). Effect of ascorbic acid in pantothenic acid deficiency. J. Nutr., 63, 601-609.

35. Barton-Wright, E.C., Elliott, W.A. (1963). The pantothenic acid metabolism of rheumatoid arthritis. Lancet, Oct. 26, 862-863.

36. Beinlich, C.J., Naumovitz, R.D., Song, W.O., Neely, J.R. (1990). Myocardial metabolism of pantothenic acid in chronically diabetic rats. J. Mol. Cell. Cardiol., 22, 323-332.

37. Bender, D.A., Bender, A.E. (1997). Nutrition: a reference handbook. Oxford University Press Oxford, UK.

39. Bennett, G.D., Ridge, L., Finnell, R.H. (1998). Folate, vitamin B12, inositol or pantothenic acid supplementation exacerbates the frequency of vaiproic acid induced neural tube defects. Toxicologist, 42(1-S), 262 (Abstract).

40. van den Berg, H. (1997). Bioavailabiity of pantothenic acid. Eur. J. Clin. Nutr., 51, S62-S63.

41. Brenner, A. (1982). The effects of megadoses of selected B complex vitamins on children with hyperkinesis: controlled studies with long-term follow-up. J. Learn. Disabil., 15, 258-264.

42. Chatterjee, N.S., Kumar, C.K., Ortiz, A. et al. (1999). Molecular mechanism of the intestinal biotin transport process. Am. J. Physiol., 277, C605-C6 13.

43. Cochrane, T., Leslie, G. (1952). The treatment of lupus erythematosus with calcium pantothenate and panthenol. J. Invest. Dermat., 18, 365-367.

Department of Health (1991). Pantothenic acid. In: Dietary reference values for food, energy and nutrients for the United Kingdom: Report of the panel on dietary reference values of the committee on medical aspects of food policy. HMSO, London, pp. 113-115.

44. Eisenstein, P., Schemer, S.A. (1997). Overcoming the pain of inflammatory arthritis: the pain-free promise of pantothenic acid. Avery Publishing Group, Garden City Park, New York.

45. Eissenstat, B.R., Wyse, B.W., Hansen, R..G. (1986). Pantothenic acid status of adolescents. Am. J. Chin. Nutr., 44, 931-937.

46. Even, P.C., Decrouy, A., Chinet A. (1994). Defective regulation of energy metabolism in mdx-mouse skeletal muscles. Biochem., J., 304, 649-654.

47. Everson, G., Northrop, L., Chung, N.Y., Getty, R. (1954). Effect of ascorbic acid on rats deprived of pantothenic acid during pregnancy. J. Nutr., 54, 305-311.

48. Fenstermacher, D.K., Rose, R.C. (1986). Absorption of pantothenic acid in rat and chick intestine. Am. J. Physiol., 250, G155-G160.

Food and Nutrition Board - Institute of Medicine. (2000). Dietary reference intakes. Thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academy Press, Washington DC.

49. Fox, H.M. (1984). In: Handbook of Vitamins: Nutritional, Biochemical and Clinical Aspects, Machim, L.J. (ed.), Marcel Dekker, NY, pp. 437-457.

50. Fry, P.C., Fox, H.M., Tao, H.G. (1976). Metabolic response to a pantothenic acid deficient diet in humans. J. Nutr. Sci. Vitaminol. (Tokyo), 22, 339-346.

General Practitioner Research Group (1980). Calcium pantothenate in arthritic conditions. A report from the General Practitioner Research Group. Practitioner, 224, 208-211.

51. Glusman, M. (1947). The syndrome of "burning feet" (nutritional melalgia) as a manifestation of nutritional deficiency. Am. J. Med., 3, 211-223.

52. Goldman, L. (1948). Treatment of subacute and chronic discoid lupus erythematosus with intensive calcium pantothenate therapy. J. Invest. Dermat., 11, 95.

53. Goldman, L. (1950). Intensive panthenol therapy of lupus erythematosus. J. Invest. Dermat., 15, 291-293.

54. Grafton, T.F., Dial, S.L., Hansen, D.K. (1997). Lack of amelioration of valproic acid- induced embryotoxicity by pantothenic acid in vitro. Teratology, 55, 58 (ABSTRACT).

55. Grassl, S.M. (1992). Human placental brush-border membrane Na+-pantothenate cotransport. J. Biol. Chem., 267, 22902-22906.

56. Gregory, J.R., Foster, K., Tyler, H., Wiseman, M. (1990). The Dietary and Nutritional Survey of British Adults, HMSO, London.

57. Haslam, R.H., Dalby, J.T., Rademaker, A.W. (1984). Effects of megavitamin therapy on children with attention deficit disorders. Pediatrics, 74, 103-111.

58. Haslock, D.I., Wright, V. (1971). Pantothenic acid in the treatment of osteoarthrosis. Rheumatology and Physical Medicine, 11, 10-13.

59. Hatano, M., Hodges, R.E., Evans, T.C. et al. (1967). Urinary excretion of pantothenic acid by diabetic patients and by alloxan-diabetic rats. Am. J. Clin. Nutr., 20, 960-967. Not got.

60. Hodges, R.E., Ohison, M.A., Bean, W.B. (1958). Pantothenic acid deficiency in man. J. Clin. Invest., 37, 1642-1657.

61. Hodges, R.E., Bean, W.B., Ohison, M.A., Bleiler, R. (1959). Human pantothenic acid deficiency produced by omega-methyl pantothenic acid. J. Clin. Invest., 38, 1421- 1425.

62. Johnston, L., Vaughan, L., Fox, H.M. (1981). Pantothenic acid content of human milk. Am. J. Clin. Nutr., 34, 2205-2209.

63. Kapp, A., Zeck-Kapp, G. (1991). Effect of Ca-pantothenate on human granulocyte oxidative metabolism. Allerg. Immunol., 37, 145-150.

64. Kimura, S., Furukawa, Y., Wakasugi, J. et al. (1980). Antagonism of L(-)pantothenic acid on lipid metabolism in animals. J. Nutr. Sci. Vitaminol. (Tokyo), 26, 113-117.

65. Koyanagi, T., Hareyama, S., Kikuchi, R. et al. (1969). Effect of administration of thiamine, riboflavin, ascorbic acid and vitamin A to students on their pantothenic acid contents in serum and urine. Tohoku J. Exp. Med., 98, 357-362.

66. Lacroix, B., Didier, E., Grenier, J.F. (1988). Role of pantothenic and ascorbic acid in wound healing processes: in vitro study on fibroblasts. Int. J. Vitam. Nutr. Res., 58, 407413.

67. Latymer, E.A., Coates, M.E. (1981). The effects of high dietary supplements of copper sulphate on pantothenic acid metabolism in the chick. Br. J. Nutr., 45, 431- 439.

68. Lewis, C.M., King, J.C. (1980). Effect of oral contraceptive agents on thiamin, riboflavin, and pantothenic acid status in young women. Am. J. Cliii Nutr., 33, 832- 838.

69. Litoff, D., Scherzer, H., Harrison, J. (1985). Effects of pantothenic acid supplementation on human exercise. Med. Sci. Sport. Exerc., 17 [Suppl.], 287.

70. Lopaschuk, G.D., Michalak, M., Tsang, H. (1987). Regulation of pantothenic acid transport in the heart. Involvement of a Na+-cotransport system. J. Biol. Chem., 262, 3615-3619.

71. Luecke, R.W., Hoefer, J.A., Thorp, F. Jr. (1952). The relationship of protein to pantothenic acid and vitamin B12 in the growing pig. J. Anim. Sci., 11, 23 8-243.

Moiseenok, A.G., Komar, V.1., Khomich, T.I. et al. (2000). Pantothenic acid in maintaining thiol and immune homeostasis. Biofactors, 11, 53-55.

72. Nagiel-Ostaszewski, I., Lau-Cam, C.A. (1990). Protection by pantethine, pantothenic acid and cystamine against carbon tetrachloride-induced hepatotoxicity in the rat. Res. Commun. Chem. Pathol. Pharmacol., 67, 289-292.

73. Nelson, M.M., Evans, H.M. (1945). Sparing action of protein on the pantothenic acid requirement of the rat. Proc. Soc. Exp. Biol. Med., 60, 319-320.

74. Nice, C., Reeves, A.G., Brinck-Johnsen, T., Noll, W. (1984). The effects of pantothenic acid on human exercise capacity. J. Sports Med. Phys. Fitness, 24, 26-29.

75. Okuda, K., McCollum, E.B., Hsu, J.M., Chow, B.F. (1962). Utilization of vitamin B12 by rats with pantothenic acid deficiency. Proc. Soc. Exp. Biol. Med., 111, 300-304.

76. Ono, S., Kameda, K., Abiko, Y. (1974). Metabolism of pantetheine in the rat. J. Nutr. Sci. Vitaminol., 20, 203-213.

77. OTC (2000). OTC Directory 2000-2001, Proprietary Association of Great Britain.

78. Otsuka, M., Akiba, T., Okita, Y. et al. (1990). Lactic acidosis with hypoglycemia and hyperammonemia observed in two uremic patients during calcium hop antenate treatment. Jpn. J. Med., 29, 324-328.

79. Palekar, A. (2000). Effect of pantothenic acid on hippurate formation in sodium benzoate-treated HepG2 cells. Pediatr. Res., 48, 357-359.

80. Pelton, RB., Williams, R.J. (1958). Effect of pantothenic acid on the longevity of mice. Proc. Soc. Exp. Biol. Med., 99, 632-633.

81. Plesofsky-Vig, N. (1999). Pantothenic acid. In: Modern Nutrition in Health and Disease, 9th ed., Shils, M.E., Qlson, J.A., Shike, M., Ross, A.C. (eds), Williams & Wilkins, Baltimore, pp. 423-432.

82. Prasad, P.D., Ramamoorthy, S., Leibach, F.H., Ganapathy, V. (1997). Characterisation of a sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin and lipoate in human placental choriocarcinoma cells.

83. Prasad, P.D., Srinivas, S.R., Wang, H. et at. (1999). Electrogenic nature of rat sodium-dependent multivitamin transport. Biochem. Biophys. Res. Comm., 270, 836-840.

84. Prival, M.J., Simmon, V.F., Mortelmans, K.E. (1991). Bacterial mutagenicity testing of 49 food ingredients gives very few positive results. Mutat. Res., 260, 321-329.

85. Pudelkewicz, C., Roderuck, C. (1960). Pantothenic acid deficiency in the young guinea pig. J. Nutr., 70, 348-352.

86. Ralli, E.P. (1952). The effect of certain nutritional factors on the reactions produced by acute stress in human subjects. National Vitamin Foundation Nutrition Symposium, 5, 78-103.

87. Reibel, D.K., Wyse, B.W., Berkich, D.A. et at. (1981). Effects of diabetes and fasting on pantothenic acid metabolism in rats. Am. J. Physiol., 240, E597-E601.

88. Robishaw, J.D., Berkich, D., Neely, J.R. (1982). Rate-limiting step and control of coenzyme A synthesis in cardiac muscle. J. Biol. Chem., 257, 10967-10972.

89. Robinson, F.A. (1966). The vitamin co-factors of enzyme systems. Pergamon Press, Oxford, pp. 406-486.

90. Said, H.M., Ortiz, A., McCloud, E. et at. (1998). Biotin uptake by human colonic epithelial NCM46O cells: a carrier-mediated process shared with pantothenic acid.

91. Sato, M., Sitirota, M., Nagao, T. (1995). Pantothenic acid decreases valproic acid- induced neural tube defects in mice (I). Teratology, 52, 143-148.

92. Schroeder, H.A. (1971). Losses of vitamins and trace minerals resulting from processing and preservation of foods. Am. J. Chin. Nutr., 24, 562-573.

93. Sewell, R.F., Price, D.G., Thomas, M.C. (1962). Pantothenic acid requirement of the pig as influenced by dietary fat. Fed. Proc., 21, 468.

94. Shibata, K., Gross, C.J., Henderson, L.M. (1983). Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine. J. Nutr., 113, 2107-2115.

95. Shrimpton, D (1995). Essential Nutrients in Supplements. European Federation of Associations of Health Product Manufacturers.

96. Sivak, A., Tu, A.S. (1980). Cell culture tumor promotion experiments with saccharin, phorbol myristate acetate and several common food materials. Cancer Lett., 10, 27-32.

97. Slyshenkov, V.5., Omelyanchik, S.N., Moiseenok, A.G. et at. (1998). Pantothenol protects rats against some deleterious effects of gamma radiation. Free Radic. Biol. Med., 24, 894-899.

98. Song, W.O., Wyse, B.W., Hansen, R.G. (1985). Pantothenic acid status of pregnant and lactating women. J. Am. Diet. Assoc., 85, 192-198.

99. Sonmez, A., Lurie, D., Chuong, C.J. (2000). Effects of pantothenic acid on postoperative adhesion formation in a rat uterine horn model. Arch. Gynecol. Obstet., 263, 164-167.

100. Spector, R., Mock, D. (1987). Biotin transport through the blood-brain barrier. J. Neurochem., 48, 400-404.

101. Srinivasan, V., Christensen, N., Wyse, B.W., Hansen, R.G. (1981). Pantothenic acid nutritional status in the elderly-institutionalized and non-institutionalized. Am. J. Chin. Nutr., 34, 1736-1742.

102. Stein, E.D., Diamonds, J.M. (1989). Do dietary levels of pantothenic acid regulate its intestinal uptake in mice? J. Nutr., 119, 1973-1983.

103. Tahiliani, A.G., Beinlich, C.H. (1991). Pantothenic acid in health and disease. Vitam. Horm., 46, 165-228.

104. Tao, H.G., Fox, H.M. (1976). Protein-pantothenic acid interrelationships in growing rats. Nutr. Rep. Int., 14, 97-106.

105. Tair, J.B., Tamura, T., Stokstad, E.L. (1981). Availability of vitamin B6 and pantothenate in an average American diet in man. Am. J. Clin. Nutr., 1328-1337.

106. Unna, K. Greslin, J.G. (1940). Toxicity of pantothenic acid. Proc. Soc. Exp. Biol. Med., 45, 311-312.

107. Unna, K., Greslin, J.G. (1941). Studies on the toxicity and pharmacology of pantothenic acid. J. Pharmacol. Exp. Ther., 73, 85-90.

108. Vas, A., Gachalyi, B., Kaldor, A. (1990). Pantothenic acid, acute ethanol consumption and sulphadimidine acetylation. Int. J. Chin. Pharrnacol. Ther. Toxicol., 28, 111-114.

109. Vaxman, F., Olender, S., Lambert, A. et at. (1995). Effect of pantothenic acid and ascorbic acid supplementation on human skin wound healing process. A double-blind, prospective and randomized trial. Eur. Surg. Res., 27, 158-166.

110. Vaxman, F., Olender, S., Lambert, A. et at. (1996). Can the wound healing process be improved by vitamin supplementation? Experimental study on humans. Eur. Surg. Res., 28, 306-314.

111. Walsh, J.H., Wyse, B.W., Hansen R.G. (1981). Pantothenic acid content of 75 processed and cooked foods. J. Am. Diet. Assoc., 78, 140-144.

112. Wang, H., Huang, W., Fei, Y.J. et at. (1999). Human placental Na±-dependent multivitamin transporter. Cloning, functional expression, gene structure, and chromosomal localization. J. Biol. Chem., 274, 14875-14883.

113. Webster, M.J. (1998). Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. Eur. J. Appl. Physiol. Occup. Physiol., 77, 486-491.

114. Welsh, A.L. (1952). Lupus erythematosus: treatment by combined use of massive amounts of calcium pantothenate or panthenol with synthetic vitamin E. Arch. Dermat., Syph., 65, 137-148.

115. Welsh, A.L. (1954). Lupus erythematosus: treatment by combined use of massive amounts of pantothenic acid and vitamin E. Archives of Dennatology, 70, 181-198.

116. Wittwer, C.T., Gahi, W.A., Butler, J. deB. et al. (1985). Metabolism of pantethine in cystinosis. J. Chin. Invest., 76, 1665-1672.

117. Wittwer, C.T., Burkhard, D., Ririe, K. (1983). Purification and properties of a pantetheine-hydrolyzing enzyme from pig kidney. J. Biol. Chem., 257, 9733-9738.

118. Microsoft Bookshelf, 1996-1997 Edition: The American Heritage Dictionary, Third Edition; The Concise Columbia Encyclopedia, Third Edition; The World Almanac and Book of Facts; Microsoft Bookshelf Internet Directory 96-97.

119. Moertel, C. G., Fleming, T. R., Coregan, E. T., Rubin, J., & O’Connell M.; England Med. 1985; 312: 137- 141.

120. Pearson, D. .& Shaw, S.; Life Extension, A practical Scientific Approach; Warner Books Inc.; June 1983. 121. Ralli, E. P. & Dumm, M. E.; Relation of Pantothenic Acid Load on Adrenal Cortical Function; Vitam Horn 1953; 11: 133-158.

122. Robishaw, J. D. & Neely, J. R.; Coenzyme A Metabolism; American Joumal of Physiology 1985; 248: El- E9.

123. Sturnpf, P. K.; Metabolism of Fatty Acids; Annual Review of Biochemistry 1969; 38-159-212.

124. Zabel J.; Serum Testosterone Concentration in Boys With Acne; Przegl. Dermatology 1981; 68, 189.

125. Knight, G. D., Ph.D.; A Waist is a terrible thing to mind; Medical Hypothesis 1998.

126. Dottori, S., Molajoni, F., and Ramsay, R.R. (1992)1 Biol. Chem. 267, 12673-12681

127. Ardalni, A., Denisova, N., Vinnani, A., Avrova, N., Federici; G., and Arnigoni, M. E. (1994)J Neurochem. 62, 1530-1538

128. Nikolacs, S., George, A., Telemachos, T., Maria, S., Yannis, M., and Konstantinos, M. (2000) Ren Fail. 22, 73-80

129. Andrieu, A. N., Jaffrezou, J. P., Hatem, S., Laurent, G., Levade, T., and Mercadier, J. J. (1999)FASEB1 13, 1501-1510

130. Mutoinba, M. C., Yuan, H., Konyavko, M., Adachi, S., Yakoyama, C. B., Esser, V., McGarry, J. D., Babior, B. M., and Gottlieb, R. A. (2000) Febs Letters 478, 19-25

131. Paumen, M. B., Ishida, Y., Muramatsu, M., Yamamoto, M., and Honjo, T. (1997)J. Biol. Chem. 272, 3324-3329

132. Chalmers, R. A., Roe, C. R, Tracey, B. M., Stacey, R. E., Hoppel, C. L., and Millingron, D. S. (1983) Bochem. Soc. Trans. 11,724-5

133. Siliprandi, N., Siliprandi, D., and Ciman, M. (1965)Biochem. J. 96, 777-780

134. White, H. L. and Scates, P.W. (1990) Neurochem.Res. 15,597-601

135. Pettegrew, J. W., Klunk, W. E., Panchalingam, K., Kanfer, J. N., and McClure, P.. J. (1995) Neurobiot. Aging 16, 1-4

136. Fedele, D. and Giugliano, D. (1997) Drugs 54, 414-421

137. Di Lisa, F., Menab6, R., Barbato, R., and Siliprandi, N. (1994) Am. 1 Physiot. 267, H455- 61

138. Packer, L., Valenza, M., Serbinova, E., Starke Reed, P., Frost, K., and Kagan, V. (1991)Arch. 288,533-537

139. Sassen, L. M., Bezstarosti, K., Van Der Giessen, W. J., Lamers, J. M. J., and Verdouw, Siliprandi, N., and Mortimore, G. (1996) .1 Biol. Chem. 267, 22066-22072